ZTT GROUP

Established in 1992, ZTT started from optical fiber communications and was listed on Shanghai Stock Exchange (SSE) in 2002 (Stock Code in SSE: 600522). ZTT has pictured a diversified industrial portfolio for marine equipment, renewable energy, new materials, smart grid, optical communications and other diversified industrial products. ZTT Group is now hosting 80 subsidiary companies and over 16,000 employee, operating 5 overseas plants located in India, Brazil, Indonesia, Morocco and Turkey. ZTT owns more than 2500 patents with independent intellectual property rights, presided over or participated in more than 500 international and national industry standards. The products of ZTT are exported to 160 countries and regions .The company has ranked among the top 500 Chinese enterprises for consecutive years and broke through \$13.4 billion in sales revenue in 2022. ZTT follows the new economic model of fostering cleaner production and accelerating green and low-carbon development, works hard to serve as the pioneer of persistent endeavor to achieve national goal involving carbon dioxide emissions peaking by 2030 and carbon neutrality by 2060, emerging as a green manufacturing technology group assuming regional economy.

Cables

Add: No.88 Qixin Road, NETDA, Nantong, Jiangsu, P.R. China, 226009 Tel: 86-0513-80100986 Email: sales@zttcable.com Http://www.zttcable.com

www.zttcable.com

Type of Railway Signal Cables

• Railway signal cable

• (Internal shield)Railway digital signal cable

• Responder data transmission cable

• Copper wire braided shielded responder data transmission cable

• Railway axle cable

• Railway long-distance symmetrical communication cable

• Signal cable for urban rail transit

• Axle cable for urban rail transit

• Multi-composite high electromagnetic shielding rail traffic communication signal cable

• Rail transit loop cable

Company profile

Zhongtian Radio Frequency Cable Co., Ltd. was established in 2004, as a high and new technology enterprise founded by Jiangsu Zhongtian Science and Technology Co., Ltd and Nanjing University of Posts and Telecommunications, which is located at Nantong Economic & Technological Development Zone of Jiangsu Province.

We provide products such as radio frequency cables, leaky coaxial cables, railway digital signal cables and accessories for mobile communications, which are widely used in over 20 countries. We have excellent R&D

ZTT Focuses on Precise Manufacturing

ability and with advanced equipment such as Maillefer and Rosendahl. We have capacity of manufacturing 80,000km radio frequency cables, 10,000km leaky coaxial cables, 13,000km railway digital signal cables, 5,000km high temperature cables and accessories per year.

Our products have passed the tests in many third laboratories, such as TLC&ROHS. We devote ourselves to offering safe and reliable products and quick and thoughtful service for our customers.

Production progress

乙丁丁

Zhongtian Radio Frequency Cable Co., Ltd(ZRF) has the industry's leading leather -bubble-leather physical foaming wire-drawing insulation series production lines, high-speed warping machine, inner shield longitudinally wrap line, argon arc welding line and other professional signal cable production equipment, professional and employs the industry renowned experts from outside to use technological advantages to build brand products.

ZRF imports international advanced brand RK-S wire-drawing insulation series line specifically for signal cable insulation wire production. This production line is equipped with the world's leading level of the 'Niehoff' wire- drawing and annealing machine, can guarantee the conductor diameter and elongation at break is stable and controllable. Leather-bubble-leather physical foaming three-layer co-extrusion extruder uses industry leading "EXTRUCELL" physical foaming technology, equipped with advanced monitoring and controlling system, can accurately control core diameter and the capacitance tolerance value, its precision manual adjustable machine head and high precision mold can effectively guarantee the conductor concentricity.

ZRF is equipped with international advanced brand high-speed warping machine, the machine uses constant tension alignment and have pre-twisting characteristic function, can guarantee the stability of four line set structure and its good symmetry properties, make work capacitance, capacitance coupling coefficient and other key indicators reach the best level. The machine also has on-line detection and feedback control function, realizes the purpose of products strictly conforming to the technological requirements.

Signal cables of ZRF has low attenuation, long distance train control signal transmission ability, excellent ability of antielectromagnetic interference, they are suitable for electrified and nonelectrified section of various operating conditions.

Main testing equipment list

No.	Equipment name	Model	Usage
1	Railway digital signal cable testing system	CTS-RW	Test the electrical properties of finished cables
2	Cable parameter analyzer at low frequency	LCTS-04	Test low frequency electrical performance of semi- finished cables
3	Frequency synthesis source	SSS08	Test the near-end crosstalk attenuation of the cable and the far end crosstalk defense
4	Frequency-selective level meter	SSL08	Test the near-end crosstalk attenuation of the cable and the far end crosstalk defense
5	Ideal shielding factor test system	CSF	Test the ideal shielding factor of finished cables
6	Digital dc bridge	SQJ23	Test cable core dc resistance
7	Tramegger	QZ2B	Test cable core insulation resistance
8	Cable fault locator	GZD-1C	Locate cable core fault point
9	Wave reflection method to locate fault points in cable	HDTDR-80	Locate cable core fault point
10	Capacitance coupling meter	QS36A	Test capacitance coupling coefficient,Earth capacitance unbalance,foreign terrain capacitance unbalance,etc.
11	Electron microscope	200M-620E	Measure cable core eccentricity
12	K-JGY	LGJ	High voltage test
13	LCR tester	3532-50	Test capacitance,inductance,impedance,phase angle,etc.
14	Elongation tester	SC-2J	Test conductor elongation at break
15	Electronic micrometer	-	Test dimension
16	Digital display vernier calipers	SF2000	Test dimension
17	Electronic tensile testing machine	WDW-20	Single wire insulation resistance to compression and tension test

Railway signal cables

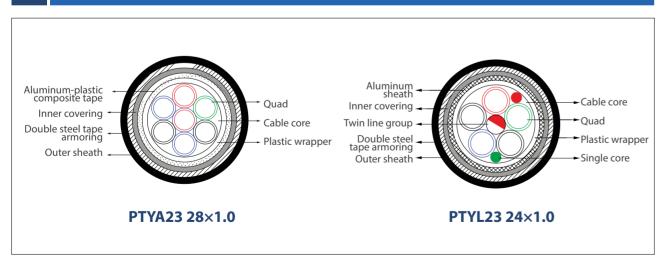
Application

Railway signal cable is suitable for railway signal and audio signal transmission or some automatic device with fixed installation. Composite sheath and aluminum sheathed railway signal cables have a little shielding performance, which is applied to be laid in electrification area or other areas with high voltage interference.

Product using characteristics

 \blacklozenge The working temperature of cables is -40 $^\circ\!\mathrm{C}$ +60 $^\circ\!\mathrm{C}$.

 \blacklozenge The long-term working temperature of conductor should not exceed +70 $^\circ \! \mathbb{C}$.


• Laying temperature of cables: PVC sheathed cable no lower than 0 ,PE sheathed cable no lower than -10° C.

Permissive bending radius of cable: unarmored cable

should not be less than 10 times of cable diameter, armored cable should be not less than 15 times of cable diameter.

◆ Ideal shielding factor of composite sheathed railway signal cables≤0.8, Ideal shielding factor of aluminum sheathed railway signal cables≤0.3.

Product structure diagram

The specification of railway signal cable

		c	core structure			mm reference OD			
No.	Specification (core			Insulation	Pla		Comprehensive	Lead sheath	
	number)	Quad	group	Signal wire	she Non-armor	atn Armor	sheath Armor	Armor	
1	4	1	_	_	8.3	11.7	16.4	23.0	
2	6	-	3	-	11.4	14.8	20.1	25.0	
3	8	-	4	-	12.4	15.8	22.2	25.0	
4	9	-	4	1	14.2	15.8	22.2	25.0	
5	12	3	-	-	14.8	19.6	23.6	27.0	
6	14	3	-	2	14.8	19.6	23.6	27.0	
7	16	4	-	-	16.2	21.0	25.7	29.0	
8	19	4	-	3	16.2	21.0	25.7	29.0	
9	21	4	-	5	16.2	21.0	25.7	29.0	
10	24	5	1	2	17.7	22.5	27.3	31.0	
11	28	7	-	-	20.3	24.1	28.8	31.0	
12	30	7	-	2	20.3	24.1	28.8	31.0	
13	33	7	-	5	20.3	24.1	28.8	31.0	
14	37	7	3	3	23.0	26.8	31.5	38.0	
15	42	7	4	6	24.0	27.8	33.0	38.0	
16	44	7	4	8	24.0	27.8	33.0	38.0	
17	48	12	-	-	26.4	31.4	35.5	40.0	
18	52	12	-	4	26.4	31.4	35.5	40.0	
19	56	14	-	-	27.8	32.8	36.7	40.0	
20	61	14	-	5	27.8	32.8	36.7	40.0	

Electrical performance

No.	Item	Unit	Index	Test method	Reduction formula
1	20°C DC resistance				
1.1	DC resistance for every conductor	Ω/km ≤23.5 GB/T 3048.4			L/1000
1.2	The Resistance of the conductor to the working wire is unbalanced	%	≤2		
2	Insulation resistance	MΩ·km	≥3000	GB/T 3048.6	1000/L
3	Capacitance				
3.1	Working capacitance of twin line group		≤70		
3.2	Working capacitance of star twist quad	nF/km	≤50	GB 5441.2	L/1000
3.3	The Capacitance between any insulated core and other insulated cores connected to ground		≤100		
4	Capacity coupling				
	k1 Average value		≤100	- GB 5441.3	√L/500
4.1	Maximum value	- 4	≤330		L/500
	k 9 k 12 Average	pF/km	≤120		√L/500
4.2	Maximum value		≤230		L/500
	Four cores cable k1 is Max				
	Unbalanced to outer capacitance				
	e a1 、e a2 Average		≤1300		
5	Maximum value	pF/km	≤1300	GB 5441.3	L/500
	Four cores cable ea1 、 ea2 is Max				
6	50Hz 2min Insulation voltage resistance 50Hz 2min				
6.1	between cores	V	1000	GB/T 3048.8	-
6.2	Core to other cores connected to ground		1800		

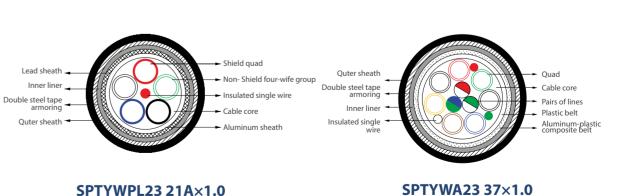
(Internal shield)Railway Digital signal cables

Application

Railway digital signal cable is suitable for transmitting control information, monitoring information and electric energy between signal equipment and control devices such as railway signal automatic blocking system, counting axis, station code, computer chain, computer monitoring, dispatching centralized, dispatching supervision, high power electric switch machine and so on. When applied to ZPW-2000, UM71 without insulation frequency shift automatic block system, the transmission distance up to 10km.

Internal shielded railway digital signal cable can meet the requirements of electrified railway on the strong electric

Product using characteristics


• Use environment temperature of the cable is -40 $^{\circ}$ C ~ + 60

 $^\circ\mathbb{C}$, the temperature of laying environment is not less than -10 $^\circ\mathbb{C}$.

• The long-term working temperature of cable conductor should not exceed + 70 $^\circ\!\mathrm{C}$.

• Permissible bending radius of cable: Non-armored cable's radius should not be less than 10 times of cable outer diameter; armored cable's radius should not be less than 15

Product structure diagram

SPTYWPL23 21A×1.0

field interference, humidity, cold and other environmental requirements and the latest signal system standard and the latest equipment mating requirements.

times of cable outer diameter; The inner shielded cable shall not be less than 20 times of cable outer diameter.

• Integrated sheath (inner shield) railway digital signal cable ideal shielding factor \leq 0.8.

Aluminum sheath (internal shield) railway digital signal cable ideal shielding factor ≤ 0.2 .

Electrical

Program	Project	Unit	index
1	DC Resistance at 20°C		
1.1	DC Resistance of each conductor	0.11 0.1	22.5±1.0
	operating lines are unbalanced	Ω/km %	≤1
1.2	to conductor Insulation		
2	Insulation resistance DC 500V 20°C	MΩ·km	
2.1	Each Insulation wire core to others(connected with screen and metal sheath)		≥10000
3	strength of the dielectric medium 50Hz 2min		
3.1	One wire core to others	V	1000
3.2	All the connected wire cores(or one wire core) to screen and metal sheath		2000
5.2	Capacitance $0.8 \sim 1.0 \text{kHz}$		2000
ŀ	Capacitance of 4-wire group		28±3 (2)
4	Capacitance of 2-wire group	nF/km	35±4
ŀ	Capacitance of one Insulation wire core to others connected to ground		<u></u>
5			570
5	Capacitance Coupling Coefficient $0.8 \sim 1.0$ kHz		≤81
5.1	K1 Average value		
	Maximum value	pF/km	330
5.2	k9~k12 Average value		≤119
	Maximum value		230
5.3	Index k1 is the maximum value of cable with four cores		
6	Unbalanced external capacitance		
6.1	ea1、ea2 On average		≤330
	Maximum value	pF/km	800
6.2	Index e_{a1} , e_{a2} are the maximum value of cable with four cores		
6.3	10% of drums are permitted e_{a1} , $e_{a2} \le 1294$		
L	near end crosstalk attenuation b entre 1000kHz loops (no less than 300m)		≥37 (37)
7	The same group	dB	≥42 (54)
	The different group		242 (34)
	The distal crosstalk ratio of 1000kHz loops		≥39 (39)
8	The same group	dB/km	≥49 (59)
	The different group		249 (59)
	characteristic impedances at 20°C		
	1.7kHz		396±24 (16
9	2.0kHz	Ω	367±22 (15
9	2.3kHz	12	343±21 (14
Г	2.6kHz	1	325±20 (13
Г	1000kHz		155±16(16
	Line attenuation 20°C		
ſ	1.7kHz		≤0.70
10	2.0kHz	ID /I	≤0.75
10	2.3kHz	dB/km	≤0.80
ľ	2.6kHz		≤0.83
i i	1000kHz		≤9.0
	phase angle.		
ŀ	1.7kHz		-39±3.9(1.2
11	2.0kHz	0	-38±3.8 (1.1
	2.3kHz		-37±3.7 (1.1
ŀ	2.5KHz		-36±3.6 (1.1
	Shielding group between the line core ground near-end crosstalk attenuation 2.6kHz		50±5.0 (1.1
	minimum 300m two screens, each group has a line connects the ground another		
12	against the ground and the near end crosstalk attenuation	dB	≥89
-	near-end impedance $55\Omega_{2}$ far-end impedance 325Ω		
13	Direct current resistance entre sheath screen and Discharge line 20° C	Ω	≤0.01

The specification of Railway Digital signal cables

		Stru	ucture of ca	able core	Referential outer diameter (mm)			
Program	Specification (number of	Quad	Twin line group	Insulation Single wire	Plastic sheath		Comprehensive sheath	Aluminum sheath
	cores)		group	Single wire	Without armor	armor	armor	armor
1	4	1	-	-	10	12	16	22
2	6	-	3	-	12	15	20	24
3	8	2	-	-	14	16	22	25
4	9	3	-	-	14	17	22	25
5	12	3	-	-	15	18	23	26
6	14	4	-	2	15	18	23	26
7	16	4	-	-	17	20	25	28
8	19	5	-	3	17	20	25	28
9	21	6	-	1	19	20	26	30
10	24	7	-	-	20	21	27	31
11	28	7	-	-	20	23	28	31
12	30	7	-	2	20	23	28	31
13	33	7	-	5	20	23	28	31
14	37	7	-	3	23	25	31	35
15	42	7	4	6	24	26	33	35
16	44	7	4	8	25	27	33	35
17	48	12	-	-	25	28	34	37
18	52	12	-	4	25	28	34	37
19	56	14	-	-	27	31	35	39
20	61	14	-	5	27	31	35	39

The specification of (Internal shield) Digital signal cables

	e	Structure of cable core			Referential outer diameter (mm)			
Program	Specification (number of cores)	Quad	Twin line group	Insulation Single wire	Plastic sheath		Comprehensive sheath	Aluminum sheath
	,		group	Single wire	Without armor	armor	armor	armor
1	8B	2	-	-	21	23	27	30
2	12A	2	1	-	21	23	27	32
3	12B	3	-	-	22	24	28	31
4	14A	2	1	2	21	23	27	30
5	14B	3	-	2	22	24	28	31
6	16A	2	2	-	22	26	28	32
7	16B	4	-	-	24	26	30	36
8	19A	3	1	3	22	24	28	33
9	19B	4	-	3	24	26	30	36
10	21A	3	2	1	25	27	31	35
11	21B	5	-	1	28	30	34	37
12	24A	4	2	-	27	29	33	37
13	24B	6	-	-	29	31	35	40
14	28A	4	3	-	27	29	33	40
15	28B	7	-	-	29	31	35	40
16	30A	4	3	2	27	29	33	38
17	30B	7	-	2	29	31	35	40
18	33A	4	4	1	29	31	35	39
19	37A	4	5	1	30	32	36	39
20	42A	5	5	2	33	35	39	42
21	44A	6	5	-	34	36	40	44
22	48A	6	6	-	34	36	40	44

	Z	[7]	
PX	中天	科技	<u>ح</u>

Responder data transmission cable

Application

The responder data transmission cable is used in a track circuit point-to-point transponder system, the connection between the devices point-to-point transponder and ground unit (LEU) signal control device , Transmission automatic block system, the data and information of the over-speed protection system , basic parameters of railway, the speed information of railway, the information of temporary speed restriction , the information of the train pulling in the station , the information of special positioning information, the target data, real-time data of the running train , and also the information of the fixed obstacles.

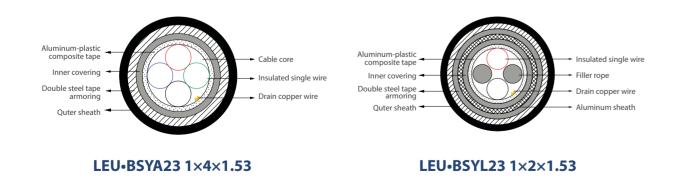
cable shall be not less than 20 times of the diameter of the

cable; integrated sheath cable should be not less than 15

◆ In the normal installation and normal operating conditions,

the using life of the cable shall be not less than 20 years.

times of the diameter of the cable.


Product using characteristics

 \blacklozenge The using temperature of cable is -40 $\,\,^\circ C$ ~ + 60 $\,\,^\circ C$, the installation temperature of cable laying should not lower than -10 $\,^\circ C$.

 \blacklozenge Long term working temperature of cable conductor shall not exceed +70 $^\circ \! \mathbb{C}$.

◆ Allowable bending radius of cable: Aluminum sheath

Product structure diagram

The specifications of transponder data transmission cable

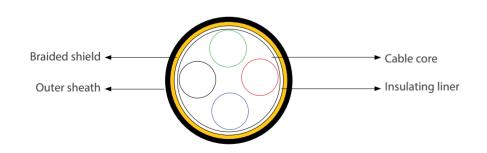
Program	type	specification	Reference outside diameter
1	LEU-BSYA23	1×2×1.53 1×4×1.53 20	20
2	LEU-BSYL23	1×2×1.53 1×4×1.53	27

Program	Project	Unit	index
1	DC Resistance at 20 °C		
1.1	DC Resistance of each conductor	Ω/km %	≤9.9 ≤1
1.2	operating lines are unbalanced to conductor Insulation		
2	Insulation resistance DC 500V 20 $^\circ\!\mathrm{C}$	MΩ·km	≥10000
3	Capacitance 0.8 \sim 1.0kHz	nF/km	≤42.3
4	strength of the dielectric medium 50Hz 2min		
4.1	One wire core to others	v	1500
4.2	Wire cores to ground		3000
5	Characteristic resistance		
5.1	8.82kHz		150±2
5.2	282.5kHz、565kHz	Ω	120±12
5.3	1800kHz		120±5
6	Line attenuation at 20° C		
6.1	8.82kHz		≤0.8
6.2	282.5kHz、565kHz	dB/km	≤5.0
6.3	1800kHz		≤8.0
_	Ideal shielding index 50Hz		≤0.2 (aluminum sheath)
7	The induced voltage on the cable metal sheath is 50V/ $\rm km \sim 200V/\rm km$		≤0.8 (Integrated sheath)
8	Continuity of metal screen		electric circuit

Copper wire braided shielded responder data transmission cable

Application

Copper wire braid shield responder data transmission cable can be used in the responder transmission system. It connects the indoor cabinets to the LEU devices or connects the outdoor cable terminal box to the transponder equipment. According to the specific use of environmental, Copper wire braid shield responder data transmission cable can use the different sheath materials. When used indoors, it can use the flame retardant sheath.


Product using characteristics

◆ The using ambient temperature of the cable is ◆ Under normal laying environment and normal operating -40 $\,^\circ\!\mathrm{C}$ $\,\sim$ +60 $\,^\circ\!\mathrm{C}$ and the laying environment temperature should not be less than -10 $^\circ\!{\rm C}$.

• The long-term operating temperature of the cable conductor should not be exceed $+70^{\circ}$ C.

conditions, the service life of the cable shall not be less than 20 years.

Product structure diagram

>> 14

The specification for copper wire braided shielded transponder data transmission cable.

Serial number	Model	Specifications	Reference outside diameter
1	LEU.BSYYP	1*2*1.14 1*4*1.14	12

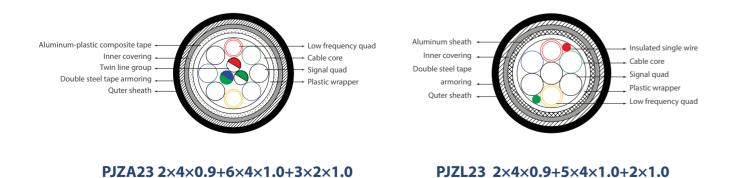
Serial number	Project	Unit	Index
1	DC resistance of each conductor $20^\circ\!\!\mathbb{C}$	Ω/km	≤26.0
2	Insulation resistance DC 500V 20 $^\circ\!\mathrm{C}$	MΩ·km	≥10000
3	Working capacitance 0.8kHz~1.0kHz	pF/km	≤45.3
4	Strength of insulating medium 50Hz AC 1min Line core Core to ground	V	1000 2000
5	Characteristic impedance	Ω	120±5

Railway axle cable

Application

Railway axle cable is used for the signal equipment rated voltage AC 500V/ DC 1500V and below . the four quad axle low frequency communication as the data transmission communication road. It is suitable for transmission of audio information (data signals, analog signals); The four group is suitable for signal frequency or DC power transmission and can also be used in the audio range of transmission Transport.

Product using characteristics


-40°C∼+60°C.

• The laying environment temperature: PVC outer sheath cable should not be less than 0 $^\circ \! \mathbb{C}$; Polyethylene sheath cable should not be less than -10 $^\circ\!\mathrm{C}$;

◆ The using ambient temperature of the cable is ◆ Allowable bending radius of cable: Armored cable should not be less than 15 times diameter of the cable.

> ♦ Ideal Shielding Coefficient of Composite sheathed railway axle cable should less than 0.8; Ideal Shielding Coefficient of Aluminum sheath railway axle cable should less than 0.2.

Product structure diagram

The specification of railway axle cable

	Reference outside diameter			Reference outside diameter		
Core number	Integrated sheath	Aluminum sheath	Core number	Integrated sheath	Aluminum sheath	
12	19.9	26.0	36	26.9	34.0	
14	19.9	26.0	38	27.2	34.0	
16	21.3	28.0	40	28.5	36.4	
22	22.8	30.0	42	28.5	36.4	
24	22.8	30.0	44	30.2	36.4	
26	22.8	30.0	46	30.2	36.4	
28	24.4	31.0	48	30.5	36.4	
30	24.4	31.0	50	30.5	36.4	
32	24.4	31.0	56	32.9	39.8	
34	26.9	34.0	-	-	-	

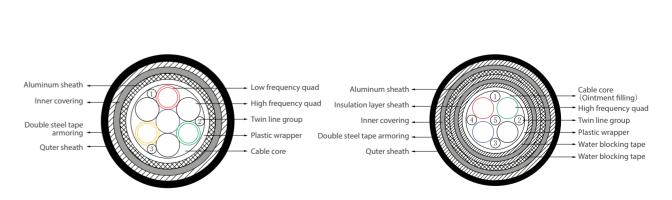
Railway long-distance symmetrical communication cable

Electrical performance

			Index		
Number	ltem	Unit	The quad, of	Single quad, the twin	
Number			low frequency communication	line group, insulated single-wire	
1	DC resistance 20℃		communication	Single-wire	
1.1	DC resistance of each conductor	Ω/km	-20 5	-22.5	
1.2	The conductor resistance of working twin wire is unbalance ^a	%	≤28.5 ≤1	≤23.5 ≤1	
	Insulated resistance DC 500V 20°C				
2	Each insulated wire core is connected with the other insulated wire core to shield and metal sleeve	MΩ·km	≥10000	≥10000	
3	Insulation medium strength 50Hz 2min				
3.1	Voltage between wire core	v			
3.2	All cores are connected together (or each core wire) to the shield with a metal sleeve		1000 1800	1000 1800	
4	Capacitance 0.8 \sim 1.0kHz				
4.1	Four line group capacitance		≤40	≤50	
4.2	Twin line working capacitance	nF/km	-	≤70	
4.3	Capacitance between each insulated wire core and the other grounded insulated wire core		-	≤100	
5	Capacitance coupling coefficient 0.8 \sim 1.0kHz				
5.1	K ₁ Average value		-	≤141	
	Maximum value	pF/km	330	660	
5.2	k ₉ ∼k ₁₂ Average value		≤168	≤170	
5.3	Maximum value		230	460	
6	Unbalanced external capacitance 0.8 \sim 1.0kHz				
	e_{a1}, e_{a2} Average value				
6.1	Maximum value	pF/km	800	2600	
6.2	There are 10% sets of cables allow the low frequency four line group which are e_{a1} and e_{a2} , maximum value ≤ 1000				
7	Linear attenuation constant $^{ m b}$ 0.8 \sim 1.0kHz	dB/km	≤0.65	-	
8	Insulated wire is broken and mixed	-	No broken w	ire, no mixed wire	

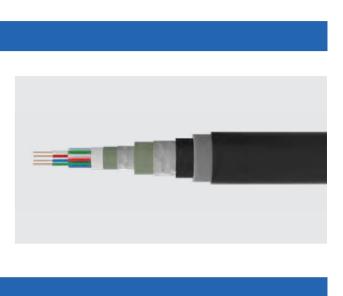
Application

Railway long-distance symmetrical communication cable is suitable for communication line in long distance trunk line and interval communication. Among them, 0.9mm high-frequency quad is used for 156 KHz analog communication system. 0.9mm low frequency quad is used for audio communication. 0.6mm, 0.7mm insulated single wire is used for signal transmission, alarm, remote control. This product is excellent shielding performance and suitable for laying in electrified sections or other strong interference area.


Product using characteristics

• Cable using temperature of is -40 $^\circ C \sim$ +60 $^\circ C$.

 \clubsuit Long term working temperature of cable shall be no more than +70 $^\circ {\mathbb C}$.


♦ Cable laying environment temperature: PVC outer sheath cable should not be less than 0 $\,^{\circ}C\,$; PE outer sheath cable should not be less than 10 $\,^{\circ}C\,$.

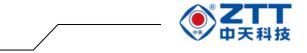
Product structure diagram

HEYFL23-156 3×4×0.9 + 4×4×0.9 + 3×2×0.7(0.6)

• Allowable bending radius of cable: no less than 15 times the diameter of the cable.

• Except the double steel tape armored cable and 1 group cable, when the induction voltage of metal sheath is 35v/km \sim 200v/km(50Hz), the ideal shielding coefficient of protective layer is less than 0.1

HEYFLT23 4×4×0.9 + 5×2×0.7 (0.6)



The specification for railway long - distance symmetrical communication cable

				Reference outside diameter(mm)							
Group Number	Cable core structure		Long distance symmetrical communication cable		Water blocking ointment filling long distance symmetrical communication cable		Long distance symmetrical high, low frequency comprehensive communication cable				
	Quad	Twin line group	Insulated core	Non armored	Armored	Non armored	Armored	Non armored	Armored		
1	1	—	_	18.2	21.8	18.1	21.8	20.6	21.8		
3	3	—	—	24.2	28.2	24.4	28.2	26.8	28.2		
4	4	5	—	24.2	28.2	25.9	30.4	26.8	28.2		
7	7	3	—	28.2	32.4	29.1	34.6	30.6	32.4		
12	12	3	_	34.4	38.8	35.4	39.8	30.6	38.8		
14	14	4	_	36.6	40.8	37.1	40.8	39.0	40.8		

No.	ltem	Index
	Conductive wire core DC resistance 20 $^\circ C$ Ω/km	
1	Quad 0.9mm	≤28.5
	Twine 0.7mm	≤48.0
	Twine 0.6mm	≤65.8
	Imbalance DC resistance of conductor	
2	Quad	≤1%
	Twine	≤2%
	insulation resistance MΩ·km	
	Each wire core to other (connect to metal screen)	
3	Quad	≥10000
	Filled quad	≥10000
	Twine	≥5000
	Dielectric strength of insulation 50Hz V 2min	
4	Core to the earth(all cores connect to the screen and metal jacket)	≥1800
	Core to the earth	≥1000

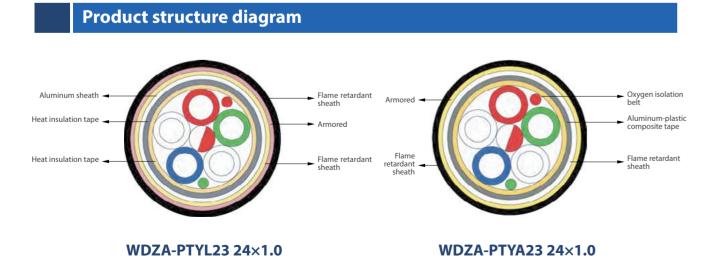
No.	Item	Index
	Operating capacitance nF/km 0.8kHz~1.0kHz	
	Non-filled cable	
	LF Quad 0.9mm	
	standard values	24.4
	Max values	27
	Twine 0.7mm、0,6mm	
	standard values	44
	Max values	50
5	HF Quad 0.9mm	
J	Average values	24.4
	allowable deviation	±1.6
	Filled cable	
	Quad 0.9mm	
	standard values	29
	Max values	34
	Twine o.7mm、0.6mm	
	standard values	50
	Max values	55
	Capacitance coupling coefficient 0.8kHz~1.0kHz	
	LF Quad	
	k ₁ Average values	≤81
6	Max values	330
0	$k_9 \sim k_{12}$ Average values	≤168
	Max values	236
	HF Quad	
	K ₂ k ₃	≤600
	Earth capacitance unbalance coefficient	
	pF/km 0.8kHz~1.0kHz	
7	$e_1 e_2$ Average values	
	Max values	≤330
	Max values (Allows 10% of the plate $e_1 e_2 \le 1294 pF/km$)	800
	HF group Degree of defense between Loop dB /500m	
	156kHz	
8	within group	
	Between group	≥61
		≥65
	HF Group	
9	Absolute characteristic impedance Ω 156kHz	
	Nominal value	175
	Absolute attenuation coefficient dB/km 20 °C 156kHz	
10	Nominal value	
	Allowable deviation	2.6
		±0.2

Signal cable for urban rail transit

Application

The product has a stronger flame retardant performance and anti-electromagnetic interference performance, able to adapt to a variety of different environments. In addition, its structure is more close and stable, to adapt to tunnel vibration caused by wind tunnel. At present, ZTT urban rail transit signal cable has been serving a number of domestic subway lines.

Product using characteristics


 \blacklozenge The ambient temperature of cable is -40 \sim + 60 $^\circ \mathbb{C}$.

♦ Cable laying ambient temperature: PVC outer sheath cable should not be lower than 0° C; polyethylene outer sheath cable should not be lower than -10° C.

◆ Allowable bending radius of cable: Non-armored cable aluminum sheathed railway signal cable is ≤0.3.

should be not less than 10 times the cable diameter; armored cable should be not less than 15 times the cable diameter.

• The ideal shielding coefficient of integrated sheathed railway signal cable is ≤ 0.8 ; the ideal shielding coefficient of aluminum sheathed railway signal cable is ≤ 0.3 .

The specification of signal cables for urban rail transit

		Cable core structure			Reference outer diameter mm				
No.	specification (cores)			Insulated	Plastic sh	eath	Integrated sheath	Aluminum sheath	
	Cores	Quad	twine	wire	Non-armored type	armored type	armored type	armored type	
1	4	1	-	-	8.3	11.7	16.4	23.0	
2	6	-	3	-	11.4	14.8	20.1	25.0	
3	8	-	4	-	12.4	15.8	22.2	25.0	
4	9	-	4	1	14.2	15.8	22.2	25.0	
5	12	3	-	-	14.8	19.6	23.6	27.0	
6	14	3	-	2	14.8	19.6	23.6	27.0	
7	16	4	-	-	16.2	20.0	25.7	29.0	
8	19	4	-	3	16.2	20.0	25.7	29.0	
9	21	4	-	5	16.2	20.0	25.7	29.0	
10	24	5	1	2	17.7	22.5	27.3	31.0	
11	28	7	-	-	20.3	24.1	28.8	31.0	
12	30	7	-	2	20.3	24.1	28.8	31.0	
13	33	7	-	5	20.3	24.1	28.8	31.0	
14	37	7	3	3	23.0	26.8	31.5	38.0	
15	42	7	4	6	24.0	27.8	33.0	38.0	
16	44	7	4	8	24.0	27.8	33.0	38.0	
17	48	12	-	-	26.4	31.4	35.5	40.0	
18	52	12	-	4	26.4	31.4	35.5	40.0	
19	56	14	-	-	27.8	32.8	36.7	40.0	
20	61	14	-	5	27.8	32.8	36.7	40.0	

Electrical performance

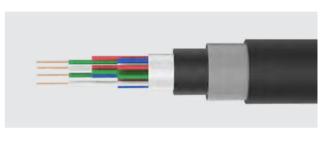
No.		Item				Test method	Conversion formula
1 1.1 1.2	Each conductor	e core DC resistance in 2 DC resistance esistance of conductor	0 ℃	Ω	≤23.5 ≤0.02	GB/T 3048.4	L/1000
2	Insulation resista	ance		MΩ	≥3000	GB/T 3048.6	1000/L
3 3.1 3.2 3.3	Capacitance working capacitance of the wire group Star twisted quad working capacitance Capacitance between any of the insulated cores and other grounded insulated cores				≤70 ≤50 ≤100	GB 5441.2	L/1000
4.1	$\begin{array}{c} \mbox{Capacitive coupling} \\ \mbox{k_1} & \mbox{Average values} \\ & \mbox{$Max values$} \\ \mbox{$k_9 \sim k_{12}$} & \mbox{Average values} \\ & \mbox{$Max values$} \\ \mbox{Four-core cable $k1$ indicators is maximum} \end{array}$				≤100 ≤330 ≤120 ≤230	GB 5441.3	$\sqrt{L/500}$ L/500 $\sqrt{L/500}$ L/500
5	ground capacitance imbalance e _{a1} , e _{a2} Average values Max values Four-core e _{a1} , e _{a2} indicators is maximum				≤330 ≤1300	GB 5441.3	L/500
6 6.1 6.2	1 Between cores				1000 1800	GB/T 3048.8	-
		Combustion Class A	Carbonization length	m	≤2.5	GB/T18380.3	
7	LSZH properties	Halogen free performance	PH Conductivity	μs/ mm	≥4.3 ≤10	GB/T 17650	_
		Low smoke characteristics	Smoke density	%	≥60	GB/T17651.2	

Axle cable for urban rail transit

Application

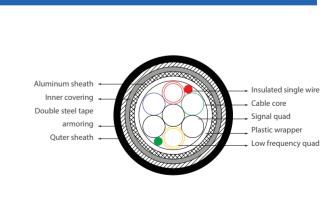
ZTT Independently developed for the urban track traffic axial cable. The product structure is stable and has excellent electrical performance and has characteristics such as corrosion resistance, resistance to ultraviolet radiation, antivibration, fire-retardant. The product has been widely applied to urban track traffic axial system.

Product using characteristics


- \blacklozenge The ambient temperature of cable is -40 \sim + 60 $^\circ C$.
- Cable conductor long-term operating temperature does not exceed +70 $^\circ C$.
- Cable laying Ambient temperature: PVC jacket cable should

Product structure diagram

Aluminum-plastic composite tape Low frequency quad Inner covering - Cable core Twin line group 🗸 Signal guad Double steel tape armoring _ Plastic wrapper Quter sheath


PJZA23 2×4×0.9+6×4×1.0+3×2×1.0

not be less than 0 $^\circ\!\mathbb{C}$; polyethylene jacket cable should not be less than -10 $^\circ\mathbb{C}$.

• Permissible bending radius of the cable: armored cable should not be less than 15 times the cable diameter.

PJZL23 2×4×0.9+5×4×1.0+2×1.0

The specification of axle cable for urban rail transit

Cores	Reference dia	meter(mm)	Cores	Reference diameter (mm)		
Cores	Integrated sheath	Aluminum sheath	COTES	Integrated sheath	Aluminum sheath	
12	19.9	26.0	36	26.8	34.0	
14	19.9	26.0	38	27.2	34.0	
16	21.3	28.0	40	28.5	36.4	
22	22.8	30.0	42	28.5	36.4	
24	22.8	30.0	44	30.2	36.4	
26	22.8	30.0	46	30.2	36.4	
28	24.4	31.0	48	30.5	36.4	
30	24.4	31.0	50	30.5	36.4	
32	24.4	31.0	56	32.9	39.8	
34	26.9	34.0				

			Index		
Number	Items	Unit	Low-frequency communication quad	Signal quad、 Twin line group、 Insulated wire	
1 1.1 1.2	DC resistance 20 $^{\circ}$ C DC resistance of each conductor The resistance of the working conductor to the conductor is unbalanced ^a	Ω/km %	≤28.5 ≤1	≤23.5 ≤1	
2	Insulation resistance DC 500V 20°C Each insulated wire core is connected with the other insulated wire core to shield and metal sleeve	MΩ·km	≥10000	≥10000	
3 3.1 3.2	Strength of insulating medium50Hz 2min Between cores All cores are connected together (or each core wire) to the shield with a metal sleeve	V	1000 1800	1000 1800	

	Items				Index		
Number				Unit	Low-frequency communication quad	Signal quad、 Twin line group、 Insulated wire	
4 4.1 4.2 4.3	Capacitance $0.8 \sim 1.0 \text{kHz}$ Four-wire working capacitance Pair-wire group working capacitance Each insulated wire core pair is connected to ground with other insulated wire core capacitance			nF/km	≤40 -	≤50 ≤70 ≤100	
5 5.1 5.2 5.3	Capacitive coupling coefficient $0.8 \sim 1.0$ kHz k_1 average maximum $k_9 \sim k_{12}$ average maximum			pF/km	- 330 ≤168 230	≤141 660 ≤170 460	
6	On the ground cap 0.8 \sim 1.0kHz	acitance imbal	ance				
6.1	e _{a1} 、e _{a2} average maximum			pF/km	- 800	≤660 2600	
6.2	Allow 10% of the n frequency quad e _{a1}	umber of cables in its low- 、e _{a2} max≤1000					
Low smoke		Flame retardant Class B		Meter	≤2.5		
7	zero halogen flame retardant		РН	-	2	-4.3	
	flame retardant properties	Halogen-free	Conductivity	μs/mm	≤10		
		Low smoke	Smoke density	%	2	≥60	

Multi-composite high electromagnetic shielding rail traffic communication signal cable

Application

Compared with ordinary signal cable, multi-composite high electromagnetic shielding track traffic signal cable use a variety of different materials to form composite shield layer which makes performance in strong electric field, strong magnetic field shielding greatly improved; as cable shielding with Copper wire shielding instead of copper tape shielding, a smaller radius of curvature can be flexibly laid in a small space for the convenient construction. Composite shielded special signal cable can be applied to the use of more harsh

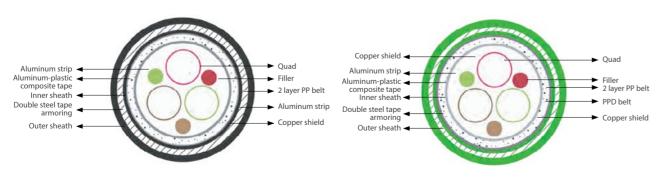
environment of the electrification section or other areas of special electromagnetic interference particularly serious.

of the cable should not be less than 10 times of the outer

◆ The ideal shielding coefficient of cable sheath 2 groups

and above cable \leq 0.1, 1 group of cable \leq 0.15.

diameter of the cable.


Product using characteristics

 \blacklozenge Ambient temperature of the cable is -40 $^\circ C$, the laying ambient temperature should not be lower than -10 $^\circ C$.

 $\blacklozenge\,$ Cable conductor long-term operating temperature does not exceed +70 $^\circ\!\mathbb{C}$.

• Permissible bending radius of the cable: The bending radius

Product structure diagram

DW-GJYWNPSA23 3×4×0.9

GJYWNPSA23 3×4×0.9

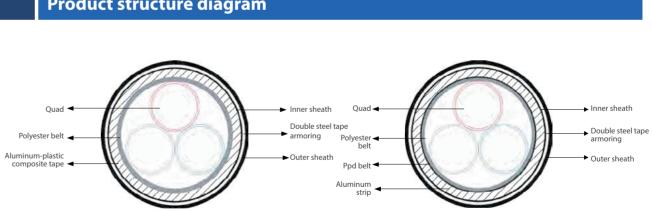
The specification of Multi composite high electromagnetic shielding rail traffic communication signal cable

		Cable core structure			Reference outside diameter (mm)		
Serial num- ber	Specifications (Core number)	Quad	Twin	Insulated con- ductors	Non-armored	Armor	
1	4	1	-	-	14.2	20.1	
2	8	2	-	-	17.9	23.9	
3	12	3	-	-	18.9	24.6	
4	20	5	-	-	21.1	27.1	
5	28	7	-	-	21.9	27.9	

No.	Item	Unit	Index
1	Direct-current resistance 20°C		
1.1	DC resistance of each conductor	Ω/ΚΜ	27.5±1.0
1.2	Resistance unbalance of conductor working pair	%	≤1
2	Insulation resistant DC 500V 20°C Each insulated wire core versus others insulated cores (connected with shielding and metal sleeve)	ΜΩ·ΚΜ	≥35000
3 3.1 3.2	Insulating medium strength 50Hz AC 1min In the wire core All wires are connected together (or each wire core) to the shield and the metal sleeve.	V	2000 2500
4 4.1	Capacitor0.8 \sim 1.2KHz Quad working capacitor	nF/Km	38±3
5 5.1 5.2	$\begin{array}{lll} \mbox{Capacitance coupling coefficient0.8} &\sim 1.2\mbox{KHz} \\ \mbox{k}_1 & \mbox{Average value} \\ & \mbox{Maximum value} \\ \mbox{K}_9 &\sim \mbox{k}_{12} & \mbox{Average value} \\ & \mbox{Maximum value} \\ \mbox{The K1 index of the four core cable is the maximum value} \end{array}$	pF/Km	≤76 200 ≤76 200

Application

The rail transit loop cable is suitable for rail transit link coding device, receiving device and IATP next to the rail link, the PAC sends link, the PAC receives packet data transmission cables audio.


Product using characteristics

• Ambient temperature of cable is -40 $^{\circ}$ C ~ + 60 $^{\circ}$ C,

• Conductor of cable operating temperature should not ♦ Mini bending radius: More than 15 times of cable outer higher than 70 deg. diameter.

• The ambient temperature laid in :PVC sheath cable not

Product structure diagram

GHYA23 3x1.4

No.	ltem	Unit	Index
6 6.1 6.2	Capacitance unbalance to earth 0.8 ~ 1.2KHz e_a1、e_a2 Average value Maximum value Quad indicator e_a1、e_a2 is the maximum value e_a1、e_a2 allowing 10% of the number of discs≤1294 pF/Km	pF/Km	≤330 800
7 7.1 7.2 7.3 7.4	Attenuation constant of line pair ^b 20°C 1KHz 10KHz 30KHz 90 KHz	dB/Km	≤0.7 ≤1.6 ≤2.1 ≤3.0
8	Near-end crosstalk attenuation between circuits150KHz In the group Between groups	dB	≥51 ≥55
9	Far-end crosstalk between circuits 150KHz In the group Between groups	dB/Km	≥52 ≥62
10	Characteristic impedance 20°C 90kHz 120kHz 150kHz	Ω	142±10
11	Insulated wire broken, mixed line		Continuous line not mixed line

between the link and can also be used for high power device power supply transmission and information transfer within the

lower than 0 deg., PE sheath not lower than -10 deg.

GHYL23 3x1.4

The specification of rail transit ring cable

	Specification (core number)	Core structure			
Serial number		Quad	Twin	Insulated single wire	
1	4	1×4	-	-	
2	6	-	3×2	-	
3	8	-	4×2	-	
4	9	-	4×2	1	
5	12	3×4	-	-	
6	14	3×4	-	2	

Electrical performance

No.	Item	Unit	Index
1	DC resistance 20°C DC resistance of each conductor 1.4mm Unbalanced resistance of conductor working line pairs	Ω/km %	≤11.9 ≤2
2 2.1	Insulation resistance(500VDC) Each insulated wire core versus other cores grounding	MΩ·km	≥35000
3 3.1 3.2	Dielectric voltage withstand 50Hz 2min Wire versus wire Wire versus ground	V	3000 2000
4 4.1	Working capacitance (0.8-1.0kHz) Maximum value	nF/km	≤65
5 5.1 5.2	Capacitance unbalance (0.8-1.2kHz) wire versus wire K1 average value maximum value wire versus ground average value maximum value	pF/500m	≤38 ≤270 ≤347 ≤1300
6 6.1 6.2	Attenuation maximum a) 1kHz b) 3kHz c) 5kHz d) 10kHz	dB/km	0.5 1.2 1.6 2.2
7	shielding coefficient	_	Composite sheath≤0.8 Aluminum sheath≤0.2

ZTT establishes quality control system strictly according to ISO9001:2008, ISO14001:2004 international standards and takes the quality control department as the core, in order to

Excellent Test Facilities

All the test instruments for manufacturing are advanced equipment which adopted from home and abroad, and they are including Railway digital signal cable testing system, Ideal

create ZTT brand and make efforts to contribute the mobile communications.

shielding factor test instrument, Low frequency parameter analyzer for cable and LCR tester, etc.

